A Corridor-Centric Approach to Planning Electric Vehicle Charging Infrastructure

Yu (Marco) Nie Mehrnaz Ghamami

Northwestern University

Introduction

- Why to switch from conventional vehicles?
- Why to switch to electric vehicles?
- Future of electric vehicles fleet
- Batteries and charging station specifications

Design Model
Charging Station Cost
min
$$z(P, E) = \left(C_p + P\lambda l \min(1, f) C_s\right) \left(\frac{l}{\beta \theta E} - 1\right) + \lambda l C_e E$$

Subject to:

$$\left(\frac{l}{\beta\theta E}-1\right)\frac{\alpha\theta E}{P} \leq T_0 \xrightarrow{\text{Level of Service}} \text{Constraint}$$

Special Cases

Discrete capacity for Charging Facility

min
$$z(P, E) = (C_p + P\lambda l \min(1, f) C_s) \left(\frac{l}{\beta \theta E} - 1\right) + \lambda l C_e E$$

Subject to: $\frac{l}{\beta\theta} - \frac{T_0 P}{\alpha\theta} \le E \le \frac{l}{\beta\theta}$

Battery Swapping

at ILLINOIS INSTITUTE OF TECHNOLOG

min
$$z(P, E) = (C'_p + rP_3\lambda l\min(1, f) C_s) \left(\frac{l}{\beta \theta E} - 1\right) + n_b C_e E$$

Subject to: $\frac{\frac{l}{\beta \theta}}{(\frac{T_0}{t_e} + 1)} \le E \le \frac{l}{\beta \theta}$
 $n_b \equiv \lambda l + (\frac{l}{\beta \theta E} - 1)\lambda l f$

- Chicago, IL- Madison, WI
- 150 miles
- 80% confident range

Power & Energy Society*

5

Baseline model

Level	of	Total travel	Energy	Ε	Battery	Charging	Number of
service		time (hr)	(kwh)		range	Power P	charging
100δ					(mile)	(kW)	stations <i>m</i>
0%		2.7	75.0		187.50	0	0
5%		2.9	37.5		93.75	286.0	1
15%		3.1	37.5		93.75	95.3	1
25%		3.4	25.0		62.50	76.3	2
50%		4.1	25.0		62.50	38.1	2
85%		5.0	18.7		46.87	25.2	3
100%		5.5	18.7		46.87	21.4	3

Sensitivity of Demand (Baseline model)

- Total cost increases with density and decreases with LOS
- Density is only effective when low
- Increases in delay, causes smaller batteries and charging stations with more charging stations

Sensitivity of Technology (Baseline model)

- Total cost decreases with the two costs
- Advancing battery technology more effective
- Charging station cost is ineffective when battery cost is low
- Larger batteries are feasible with lower battery cost

or electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Discrete capacity for Charging Facility

Battery Swapping

•

Total Cost_{Charging Station} – Total Cost_{Battery Swapping} Total Cost_{Charging} Station (b) r=0.3 (a) r=0.1 200 200 0.3 0.2 Level of Service100 d (%) 0.2 0.1 150 150 0.1 0 At low density 0 -0.1 00 -0.1100 the two options -0.2 -0.2 -0.3 are the same -0.350 50 -0.4 -0.4 -0.5 Swapping is more -0.5 -0.6 -0.6 competitive at 10⁰ 10^{0} 10 high density and high level of (c) r=0.5 (d) r=0.7 200 200 0.2 service Level of Service100 d (%) -0 0 150 150 -0.2 -0.2 00 100 -0.4 -0.4 -0.6 50 50 -0.6 -0.8 -0.8 10^{0} 10^{0} 10 10 Density (Vehicle per mile) Density (Vehicle per mile) or electricity innovation at ILLINOIS INSTITUTE OF TECHNOLOGY Power & Energy Society*

10

Conclusion

- Level 2 charging is indeed socially optimal for very low EV market penetrate rates.
- Level 3 charging is needed to achieve a reasonable level of service.
- Advancing battery technology seems to promise larger impacts than the charging technology.
- Battery swapping enables the use of smaller batteries and to achieve higher level of service.
- If existing infrastructure can be remodeled to support battery swapping and charging operations, charging could be a socially optimal solution for modest levels of service.

Thank You

Questions?

